Electrical Transmission Cables

  • Measuring tools: Fluke 1587 Insulation Multimeter
  • Operator: Singapore electrical utility
  • Tests conducted: Insulation resistance cable test, continuity, voltage

When the electrical transmission is underway and distributed from generation plants to the end-users, it passes through numerous sections of low voltage and high voltage cables. These transmission cables are also used to connect to the secondary outputs of current transformers (CT). They are deployed at both ends of the transmission stations, also known as sub-stations. The Fluke 1587 Insulation Multimeter is the direct action to any electrical transmission cables’ faulty wirings.

To protect critical equipment and prevent the escalation of faults, these pilot cables serve to detect any unbalances between the corresponding pairs of CT. Ultimately, this may affect the entire transmission network. While only one pair of wires is needed to complete the connections, operation, and redundancy, planning calls for a minimum of three functional pairs of wires at any one time.

About electrical transmission.

It is impossible to have a single cable that spans the vast distance between sub-stations. As a result, this can imply a connection of cables. To say the least, such joints are the weakest links in the system. Ultimately, environmental factors can cause faulty joints. One of these factors includes thermal stress and moisture absorption. The failures will show up when current readings taken at the secondary of CT deviate from the proportional primary current readings. Remember, never be complacent with these kinds of abnormalities so it’s always safe to contact someone who knows their way around. Call utility maintenance when these kinds of faults occur.

Meanwhile, maintenance men have to travel to the sub-station at one end to isolate the affected CT and pilot cable at that sub-station. Then they need to travel to the sub-station at the other end to check the insulation resistance of the pilot cable.

While they’re at it, they will check the pair of wires that have been used, as well as all the remaining 4 or 9 pairs of wires in the same bunch of pilot cable, and ensure at least three pairs are functional. As some wires may have permanent damage, there’s actually a way to prevent this. How? With the use of colored cables. Different colored wires are mixed to achieve a minimum of 3 functional pairs. Therefore, the team must verify the exact inter-connect pairs and they term this work as “phasing”.

Thereafter, to prevent abnormality, make it a habit to check insulation resistance. This also goes for “phasing”.

Remember…

In addition, these tests can be mandated by a new extension of cables due to civil engineering works. It’s no secret that time is critical for maintenance men, so the faster the troubleshooting, the better. Moreover, doing these tests in the shortest time possible is a huge plus. Maintenance people find the Fluke 1587 Insulation Multimeter a very versatile tool. Why? This device can perform insulation resistance tests as well as voltage measurements and continuity checks.

For testing of high voltage equipment, cables and switchgear, the team relied on the Fluke 1550B 5 VK MegOhmMeter.

Get your Fluke tool from a trusted source!

Presidium PH is an authorized distributor of Fluke test tools in the Philippines. So if you want to know more about Fuke tools and their functions, visit our website for more info! This is a one-stop-shop for the best test tools in the market! With a wide selection of the best troubleshooting and maintenance devices, this is your one-stop-shop for all your device needs when it comes to choosing the best device for your electrical transmission needs.

You could now buy Fluke 1587 Insulation Multimeter from us! Simply contact:+632 84590167/ +632 82570795 / +632 82515165 or visit our e-commerce site.

Read more

Thermal Imaging Software: Choose The One That Makes Your Job Easier!

Thermal imaging software extends a lot more features and happens a lot easier to utilize than what was accessible in the past. Now, you can connect thermal imaging software on a PC or mobile device. Ultimately, this can establish, improve, simplify, and evaluate images and construct professional-looking reports that you can distribute in email.

Moreover, don’t think that by augmenting images you’re altering the actual data; you’re just modifying how it is presented so that even an inexperienced eye can clearly see anomalies. Basically, this helps expedite decisions and minimize debates.

Choosing Thermal Imagers…

Here are some of the basic rules for choosing thermal imaging software is to make sure it allows you to:

  • Process and export images in multiple formats including .jpg, .tiff, .bmp, .gif, and .avi as well as proprietary formats that allow you to access more data for advanced analysis.
  • Edit and manipulate images by adjusting level and span, changing emissivity, adding markers, highlighting hot spots, referencing images, and applying color alarms.
  • Combine visible light and infrared images and adjust the blend between the two to more easily locate and highlight potential problem areas.
  • View and share images live from your camera, your smartphone, or your computer to collaborate with remote team members.
  • Remotely control your infrared camera to adjust focus or capture images without touching the camera. This is especially valuable in potentially hazardous areas or tight spaces.
  • Create templated or custom reports that you can share in .pdf or .docx formats.
  • Perform three-dimensional analysis so you can view infrared images from multiple perspectives to identify additional problem areas and help eliminate false positives.
  • Compare images side-by-side so you can see the changes in the same target over time to aid predictive maintenance programs.
  • Change color palette to make hot or cold areas more obvious with high contrast palettes or to see subtler differences with a grayscale palette.
  • Add text and audio annotations along with additional visible-light images to provide the details you need for thorough reporting.
  • Categorize, catalog, or tag images and associate them with equipment to make it easier to track images over time.

Get your Fluke tool from a trusted source!

Presidium PH is an authorized distributor of Fluke test tools in the Philippines. Therefore, if you want to know more about Fuke tools and their functions, visit our website for more info! This is a one-stop-shop for the best test tools in the market!

Receive personalized recommendations from an Authorized Distributor. Contact us now!

+632 84590167 / +632 82570795 or email us info@presidium.ph

Read more

Fluke Insulated Hand Tools

Safe and Rugged.

Safety is vital when working with electricity. Strictly follow the right procedures. Wear the proper clothes. Use eye and hearing protection. And make sure you use the right tools. High-quality, fluke insulated hand tools.

Rubber or plastic on the handles is what most hand tools have. That’s not the same as offering protection from electric shock and controlling the possibility of arc faults due to short circuits. That’s what makes insulated tools different.

These hand tools are:

  • The most comfortable, ergonomic design possible
  • Designed and manufactured in state-of-the-art German facilities in Germany to traditional Fluke quality standards
  • Compliant to the global safety standards
  • Certified to 1000 V ac, 1500 V dc
  • Backed by a limited lifetime warranty
  • Available from your Fluke distributor

Get your insulated hand tools from a trusted source!

Presidium PH is an authorized distributor of Fluke test tools in the Philippines. Therefore, if you want to know more about Fuke tools and their functions, visit our website for more info! This is a one-stop-shop for the best test tools in the market!

Shop now for the fluke insulated tools: Insulated Hand Tool Archives – Presidium PH

Read more

Fluke Test Leads, Test Probes, and Alligator Clips

Get reliable measurements for a variety of electronics, industrial and automotive applications by using Fluke test leads, test probes, and alligator clips. Fluke accessories (specifically test probes) are the number one choice to get the most out of your Fluke test tools and multimeters.

Fluke test leads and probes enhance your ability to take multimeter measurements in different environments. From probe-in-one to modular retractable test leads with alligator clips and probes, and patch cords of various lengths. All test leads are 1.5 m (59 in) long.

Get one from an authentic source!

We’re not going to lie, of course, your Fluke accessories can be stored in other cases or you could probably get some of the test lead and probes from a secondhand source. But still, nothing beats the durability and the performance of new accessories. It’s a sure-fire, good investment especially if you’ll be using them on a daily basis. 


Presidium PH is an official distributor of Fluke accessories in the Philippines. So if you’re interested in purchasing one of these amazing products, make sure to visit our website. You’ll have plenty to choose from to level up your Fluke items. Happy shopping!

Presidium.PH is your go-to source.

Presidium PH is an authorized distributor of Fluke test tools in the Philippines. So, if you want to know more about Fuke tools and their functions, visit our website for more info! This is a one-stop shop for the best test tools in the market!

Reach us through info@presidium.ph or contact us at +632 84590167 / +632 82570795

Read more

Electrical PPE – Personal Protection Equipment

Personal protective equipment can help keep you safe.

What is personal protective equipment (PPE) and why is it important? According to 85% of electrical workers who participated in a recent Fluke survey, not very. They said they skip wearing proper protective gear because it’s inconvenient. Yet, we know that this protection gear is really your last line of defense to remain safe in an arc flash or arc blast environment. Of course, the best way to avoid shock or electrocution is to stay far away from living components and to only work on dead equipment. Unfortunately, even when taking the appropriate precautions, arc flash and other accidents can still happen. That’s why electrical PPE is your last line of defense to remain safe in an arc flash or arc blast.

The United States Department of Labor’s Occupational Safety and Health Administration (OSHA) and NFPA create robust guidelines and regulations around job site safety. NFPA 70E, the Standard for Electrical Safety in the Workplace, details the requirements and the PPE required for safe work practices. While NFPA 70E standards are not required by law, they were written to help meet the requirements that OSHA does require by law. In order to figure out what PPE is necessary for certain environments; you need to start by conducting a hazard assessment.

What are PPE requirements?

PPE’s are the ideal wear for any job site, especially hazardous ones. Taking a hazard assessment tells you what PPE is required on site. Also, is also the first step toward developing a safety program. It should serve as your foundation for creating a safe work environment. You need to identify the potential hazards in the workplace, both physical and health-related.

Potential health hazards are things like exposure to harmful dust, chemicals, or radiation. Physical hazards can include a broad variety of work areas including, but not limited to:

  • Moving objects
  • Sharp edges
  • Potential for falling objects
  • Electrical connections
  • Extreme temperatures

As you conduct a walkthrough of the job site, you’ll want to document every possible hazard. The information can be organized later, and the proper PPE is determined to protect employees from each hazard. The job site should also be periodically reassessed to ensure any changes are considered, and the PPE levels set are enough.

Selecting proper PPE

Here are some things to keep in mind after taking the hazard assessment. Firstly, try and remove any hazards you come across to. Keep a hierarchy of control’s in mind as you set up your plan. The National Institute for Occupational Safety and Health (NIOSH) ordered these controls in order from what is most effective to what is least effective in protecting workers’ safety.

  1. Eliminate the hazard
  2. Substitute less hazardous equipment or materials
  3. Engineer controls to reduce exposure or severity
  4. Warning, signs, and other communications
  5. Administrative controls; including safe work practices
  6. Personal protective equipment

If you’ve gone through the hierarchy and come to PPE as the final step, come up with a list of PPE for electrical work. You should follow NFPA 70E guidelines to select the minimum PPE standards for areas you noted in the assessment. Table 130.5(C), or the Table Method of NFPA 70E helps to estimate the likelihood of an occurrence of an arc flash incident in different AC and DC systems and whether PPE should be required.

The table is a minimum required level. It is always a good idea to not just meet the minimum safety requirements, but to exceed standards. OSHA requires many of the PPE categories to meet standards developed by the American National Standards Institute (ANSI) for these three types of PPE:

  • Eye and face protection,
  • Head protection and
  • Foot protection.

ANSI doesn’t have a standard for gloves, but OSHA recommended the selection be based upon the tasks being performed.

PPE training

As part of OSHA’s standards, employers are required to train employees who need to wear electrical PPE. Their training scope is about what to wear, when, how, proper maintenance, and how to dispose of it. The training also covers the PPE’s limitations.

Understanding the limitations of PPE is an important aspect of the training so one should take it seriously. Ultimately, wearing the proper protective clothing is viewed as the first line of defense in case of arc flash. But remember, PPE is not foolproof. Nevertheless, when combined with good safety practices, PPE provides the best possible outcome in the event of an arc flash or arc blast.

Including PPE training as part of your regular safety training can also help keep all employees up to date on any changes and give you a chance to review the effectiveness of your electrical PPE measures. That safety training should make sure everyone is taking the appropriate steps to prevent arc flash incidents and minimize their occurrences. Wearing and using proper PPE needs to be one of those steps. It will reduce your injuries and could save your life.

Read more

Best Solar Energy Industry Tools

Solar energy is the future of electricity for homes, businesses, and utilities to feed into the grid. A lot of people are taking notice of how solar energy is becoming one of the fastest-growing developments of renewable energy worldwide. It’s convenient and works by taking the sun’s energy and transforming it into direct current (DC) electricity. Because solar technology has been refined. Moreover, it’s no secret that the cost of going solar is sinking swiftly to locals. Therefore, it makes an attractive, cost-saving option for many.

To broaden the use of their skills and develop their test and measurement toolset, the rising popularity of solar energy creates new opportunities for electricians, installers, and technicians. At Presidium.PH Corporation, we aim to help you find the right tool solutions to keep you safe in every operation. Whether you are installing PV modules on a residential scale, commissioning a new range, or doing routine maintenance.

Receive personalized recommendations from an Authorized Distributor. Contact us now!

+632 84590167 / +632 82570795

Read more

What Is A Clamp Meter?

General Definition…

A clamp meter is an electrical test tool that integrates a basic digital multimeter with a current sensor.

Basically, clamps measure current. Meanwhile, probes measure voltage. Having a hinged jaw joined into an electrical meter allows technicians to clamp the jaws around a wire, cable, or other conductors at any point in an electrical system, then measure current in that circuit without disconnecting/de-energizing it.

Ultimately, underneath their plastic moldings, hard jaws consist of ferrite iron and are engineered to detect, deliberate, and measure the magnetic field being produced by current as it flows through a conductor.

  1. Current-sensing jaw.
  2. Tactile barrier (to protect fingers from shocks).
  3. Hold button: Freezes the display reading.
  4. Dial (aka rotary switch).
  5. Display.
  6. Backlight button.
  7. Min Max button – Can be triggered depending on the amount of pushes.
  8. Inrush current button.
  9. Zero buttons (yellow): Removes dc offset from dc current measurements. Also serves as the dial’s shift button to select yellow functions scattered around the dial.
  10. Jaw release lever.
  11. Alignment marks – To meet accuracy specifications.
  12. Common input jack.
  13. Volts/ohm input jack.
  14. Input for the flexible current probe.

Formerly created as a single-purpose test tool, recent clamp meters provide more measurement functions, greater accuracy, and in some cases specialized measurement features. In line with this, today’s clamp meters include most of the straightforward functions of a digital multimeter (DMM), such as the capability to measure voltage, continuity, and resistance.

Clamp meters have developed popular tools primarily for two reasons:

  • Safety. Clamp meters allow electricians to avoid the old-school process of cutting into a wire and inserting a meter’s test leads into the circuit to take an in-line current measurement. As a result, the jaws of a clamp meter do not need to touch a conductor throughout a measurement.
  • Convenience. During a measurement, it is not compulsory to shut off the circuit carrying current—a big boost in efficiency.

When measuring high levels of current, an ideal tool is a Clamp Meter. Meanwhile, DMMs cannot measure 10 A of current for more than 30 seconds without risking damage to the meter.

Also, clamp meters propose a minimum current range of 0 A to 100 A. Many models have an array of up to 600 A. Others go up to 999 A or 1400 A, and some plug-in clamp accessories such as the iFlex® can measure as high as 2500 A.

However, industrial equipment, industrial controls, residential/commercial/industrial electrical systems, and commercial/industrial HVAC, are used under Clamp meters.

  • Service: To repair existing systems on an as-needed basis.
  • Installation: To troubleshoot installation problems, perform final circuit tests, and supervise apprentice electricians while installing electrical equipment.
  • Maintenance: To perform scheduled and preventative maintenance as well as system troubleshooting.

Three types of clamp meters exist:

  • Current transformer clamp meters: measure only alternating current (ac).
  • Hall Effect clamp meters: measure both alternating current and direct current (ac and dc).
  • Flexible clamp meters: employ a Rogowski coil; measure ac only; good for measuring in tight spaces.

VISIT OUR WEBSITE AND SHOP NOW: Clamp Meters Archives – Presidium PH

Read more

Diagnosing Power Problems At The Receptacle

By determining hot-neutral voltage, neutral-ground voltage, and hot-ground voltage you are well on your way to answering these receptacle fault questions:

  • Is the outlet wired incorrectly?
  • Is the branch circuit too heavily loaded?
  • Do sensitive electronic loads have the voltage they need?

Basically, these three measurements, all occupied speedily at one outlet, deliver you with a solid acceptance of the building’s electrical supply.

Testing a three-slot receptacle for grounding polarity

Basically, inaccurately wired receptacles are not unusual. A three-slot receptacle has a hot slot (short), a neutral slot (long), and a grounding slot (U-shaped). Are the hot (black) and neutral (white) wires reversed? Are the neutral and ground (green) wires reversed or shorted?

Ultimately, these conditions can go unnoticed for a long time. Many loads aren’t delicate to polarity—they don’t care if hot and neutral are reversed. In contrast, sensitive electronic loads such as computer equipment and instrumentation do care about clean ground – a ground with no voltage and no-load currents on it. A single reversed neutral and ground can cooperate with the entire ground system.

Here’s what you can find.

Hot-neutral is the load voltage. Voltage should read about 120 V (typically 115 V to 125 V). You measure exactly 118.5 V.

  • Neutral ground is a voltage drop (also called IR drop) caused by load current flowing through the impedance of the white wire. Let’s say you measure 1.5 V.
  • The hot ground can be thought of as the source of voltage available at the receptacle. You read 120.0 V. Therefore, you note that hot-ground is higher than hot-neutral. In fact, the hot-ground is equal to the sum of the hot-neutral and neutral-ground voltages.

Are these readings normal? Is the outlet wired correctly?

How to detect mis-wired receptacles

The most common mis-wiring occurs if hot and neutral are switched, or if neutral and ground are either switched or shorted. How do you spot these conditions?

  1. Measuring hot-neutral by itself does not tell you if they’ve been switched. You need to measure neutral-ground or hot-ground. If neutral-ground voltage is about 120 V and hot-ground is a few volts or less, then hot and neutral have been reversed.
  2. Below load conditions, there should be some neutral-ground voltage – 2 V or a little bit less is pretty typical. If neutral-ground voltage is 0 V – again assuming that there is a load on the circuit – then check for a neutral-ground connection in the receptacle, whether accidental or intentional.
  3. In checking if neutral and ground are switched, measure hot-neutral and hot-ground under load. In line with this, Hot-ground should be greater than hot-neutral. The greater the load, the more the difference. If hot-neutral voltage, measured with the load on the circuit, is greater than hot-ground, then the neutral and ground are switched. This is a probable safety hazard and the condition should be modified immediately.

Remember…

Hot-ground reading should be the highest of the three readings. Therefore, the ground circuit, under normal, non-fault conditions, should have no current and therefore no IR drop on it. You can think of the ground connection as a wire running back to the source (the main panel or the transformer), where it’s connected to the neutral. On the receptacle end of the ground path, where the measurement is being made, the ground is not connected to any voltage source (again, assuming there is not a fault). So the ground wire is like a long test lead back to the source voltage.

When there is a load connected, the hot-ground receptacle source voltage should be the sum of the hot-neutral voltage (the voltage across the load) and the neutral-ground voltage (the voltage drop on the neutral all the way back to its connection to the ground circuit).

Finally, if you want to know more about Fluke tools, don’t hesitate to browse in one of Philippines’ authorized distributors, Presidium.PH!

Read more

What Is Resistance?

A General Description…

“Ohms” is another way to call this element. Initially, it is a hindrance to the movement of electrons in the material. While a potential difference across the conductor encourages the flow of electrons, resistance discourages it. The rate at which charge flows between two terminals is a combination of these two factors.

All materials resist current flow to some degree. They fall into one of two broad categories:

Conductors: Materials that offer very little resistance where electrons can move easily. Examples: silver, copper, gold, and aluminum.

Insulators: Materials that present high resistance and restrict the flow of electrons. Examples: Rubber, paper, glass, wood, and plastic.

Initially, these measures are taken to specify a component or a circuit. The elevated the ohms are, the lower the current flow. If it is too high, a possible cause can be damaged conductors because of burning or corrosion. Overheating is a definite issue of resistance. This is because all conductors give off some degree of heat. They reduce impedance, the greater the current flow. Possible causes: insulators damaged by moisture or overheating.

Keep in mind…

Many components, such as heating elements and resistors, have a fixed-resistance value. These values are often printed on the components’ nameplates or in manuals for reference. The measured value should be within the specified resistance range. Any significant change in the said component value usually indicates a problem. This element may sound negative, but electricity can provide advantages.

The ohms of a conductor, or circuit element, generally increase with increasing temperature. When cooled to extremely low temperatures, some conductors have zero resistance. Currents continue to flow in these substances, called superconductors, after the removal of the applied electromotive force.

Meanwhile, this can have good and bad effects. If we are trying to transmit electricity from one place to another through a conductor, resistance is undesirable. Why? This is because electrical energy can turn into heat.

Using Ohm’s Law

Accordingly, troubleshooting technicians often determine resistance by taking voltage and current measurements and applying Ohm’s Law:

E = I x R

That is volts = amps x ohms. R stands for resistance in this formula. On the other hand, you can also convert the formula to R = E/I (ohms = volts divided by amps). However, this works only when the resistance is unknown.

Finally, if you wish to know more about the best-performing Fluke tools in the market, don’t hesitate to visit our feed

Read more

Peak Efficiency Cogeneration

Cogeneration captures heat from energy-intensive industrial methods and puts it back to work. Basically, steam is the outcome of this process. And that steam can lead to a turbine generator or warm other components of the facility. For instance, heat recovery can increase energy efficiency by 30 percent or more. Cogeneration has accumulated a lot of attention. As a result, sophisticated and almost turnkey cogeneration solutions are now available in a variety of sizes.

Here are the three key areas of the cogeneration process to help your plant maximize productivity.

Enhancing heat recovery

Everything that permits heat to escape from a heat recovery system decreases efficiency. Insufficient or damaged insulation and failed steam traps are two areas that merit close attention. To find failed insulation, begin with a careful visual inspection. A thermal imaging tool is a big help here. Initially, what may look good to the naked eye may look completely different when viewed with a thermal imager. Inspection of all insulated piping and equipment with a thermal imager should be performed annually and after any maintenance that requires the removal of insulation.

Optimizing mechanical systems and equipment

Thermal imaging can also guide with repairing mechanical problems that can diminish the efficiency and reliability of a cogeneration operation. A vibration tester can then track the cause of overheated mechanical parts that have been detected with a thermal imager.

Peak Efficiency Cogeneration: Improving electrical systems

Electrical inefficiencies in cogeneration systems can be in both the electrical generation and distribution system and in electrical equipment that operates as part of the cogeneration system. If the generator of the cogeneration facility is providing a huge number of inductive loads, for instance, motors and transformers, it may be running at a poor power factor. Increasing power factor correction capacitors in the electrical distribution system will innovate the power factor, and more power from the generator will be available to do useful work in the distribution system.

Peak efficiency cogeneration maximizes the power of combined heat and proper with proper measurement and maintenance in three aspects in order to help your plant maximize reliability. Visit https://presidium.ph/ for more information.

Read more