How to Reduce Industrial Waste in the Office

Since the rise of the industrial revolution in the 1800’s, technology and machines have advanced and developed tremendously. And it is undeniable that these advancements played a big role in the modern technology we now use and enjoy. However, the more the technologies and machineries advance, the bigger the waste it also produces, which in turn, contributes to the rising issue of energy waste and pollution.

Wasted energy is a big problem. It costs businesses billions of money, on top of the number 1 reason that it is extremely harmful to our environment. Most businesses tend to overlook the waste they accumulate because of the machines they use, not because they ignore it on purpose, but actually some businesses don’t know how to address this issue properly.

Here in the Philippines, government agencies have exerted efforts in the hopes to address this issue. Spearheaded by the Department of Energy, in collaboration with the Department of Trade and Industry, these two agencies launched The Philippine Industrial Energy Efficiency Project (PIEEP). PIEEP is a 5-year project that aims to promote sustainable energy management system and achieve energy efficiency best practices within the PH setting, with the hopes to obtain energy savings, and contribute to climate change mitigation.

As a company, what exactly are the things that you should do and keep in-check to make sure that the machines you are using have not become a pollutant? Let’s find out!

Overhaul Old and Inefficient Equipment

 

When was the last time you upgraded your equipment? If it’s been awhile, you’re probably starting to notice a few changes in your equipment like longer boot/ start time or it may start to sound noisier that it usually should. With proper care, machines can last up to 7-9 years of use, with some you just need to upgrade the system and the body is still in good condition. However, if you’ve been using a certain machine for more than a decade, there may be newer models that are much more energy-efficient, and cost-saving. Upgrading may require an up-front investment, but when you invest in the right equipment, you will be saving more earnings in the long run.

Immediately fix HVAC issues

HVAC stands for Heating, Ventilation, and Air Conditioning. These are any machines that provide you heating a cooling services. In an average office set up, any HVAC machine is responsible for about 40% of an office’s energy cost. The percentage increases if an office practices bad heating and cooling habits. Even simply leaving a door or window open of an air conditioned room will cost you a lot of energy costs. A good way to make sure that you are practicing good HVAC practices is to have your AC or heater calibrated. Having your HVACs calibrated assures you that it is giving the appropriate cooling that for your room. You can also set a timer so that it will adjust automatically once it reaches the desired cooling temperature.

Do Monthly Check-Ups

It’s important that you know how much energy you are consuming or how else will you know how much you are wasting? Checking up on your equipment for at least once a month can help you avoid having a hazardous environment caused by electrical inaccuracies. Re-calibrating your equipment may also help improve the equipment overtime, just make sure you know how to properly use and take cre of your products so they don’t become a harm to our environment.

If you need help with calibrating your equipment, you may check out Presidium.ph Corporation. Presidium is the official distributor of Fluke Industrial Corporation here in the Philippines; they are a provider of manufacture, distribution, and service of electronic test tools for biomedical equipment and networking solutions.

Read more

Power Quality and Symptoms 101

Most amateurs would have trouble recognizing power quality problems from electrical distribution systems or equipment connected to circuits. More often than not, these problems would be viewed as just faulty old equipment that needs replacing or a one-time inconvenient reset.

 

To get to the root of the problem, you might look at types of loads on the system and monitor for harmonics, unbalance or disturbance patters.

 

There are two types that can determine the area where the common problems in power quality occur: Harmonic Distortion Issues and Voltage and Current Anomalies. For the latter, problems may still be correct before the equipment is damaged.

 

Here’s a quick rundown on power quality symptoms and causes:

 

Dips or Sags

 

Voltage dips or sags are a reduction of voltage of 10% or more below the normal or recommended usage. They have a ripple effect across equipment and can be caused by starting large loads, having similar operations in neighboring facilities, or severe weather.

 

You might experience dimming of lights, computer lockups, relay and contactor chatter, or complete dropout. Your equipment and system may also shutdown or produce random deceptive alarms.

 

Swells

 

Voltage swells are the complete opposite of dips. They are surges in voltage of 10% or more above normal or recommended usage. Overvoltage is a swell that lasts longer than a minute.

 

If you’re getting failed power supplies and overvoltage shutdowns and alarms on variable frequency drives (VFDs), you might be experiencing this issue. Potential causes include fault on a single phase of a three-phase system, sudden load decrease, or capacitor bank switching.

 

Transients

 

Transients, also known as Voltage Spikes, are dangerous for people working with electrical systems. They are short bursts of energy that are typically caused by switching of capacitors. They can also be created by lightning strikes, reenergizing systems after a power failure, sudden stoppage of large equipment, or dirty or worn contactors.

 

Some symptoms you might experience include flashover and arcing effects in distribution equipment, damaged insulation, failed electronics and computers lockups.

 

Interruptions

 

Interruptions are mostly caused by momentary loss of utility power. Symptoms include equipment shutdowns.

 

Unbalance

 

In a balanced three-phase system, the phase voltages should be equal or close to equal. If the measurements of the phase voltages are far and wide, they are considered unbalanced.

 

If you’re experiencing overheated three-phase motors and transformers, you might have an unbalance issue. This is due to unbalanced loads across individual phases of three-phase panel boards, unbalanced utility supply, operation of single-phase welders, or open-delta transformers.

 

Harmonics

 

Harmonics are currents or voltages with frequencies that are integer multiples of the fundamental power frequency. While any electronic load can generate harmonics, you may experience inefficiencies, which can be an issue.

 

Some symptoms of this issue include overheated neutral conductors, transformers, and inductive motors. The electronic equipment may also produce artificial and unexplained alarms, and shutdowns.

 

A potential cause for this issue is non-linear loads such as switching power suppliers, converter sections of uninterruptible power supply (UPS), VFDs, and battery chargers. Welders and arc furnaces are also identified as possible sources.

 

Identifying power quality issues can help protect your equipment from damage. Invest in high-quality test and calibration tools, and be confident with your measurement results. Presidium is the official distributor of Fluke Industrial Group and Fluke Calibration products in the Philippines. For inquiries, call +632 464 9339 or email us at info@presidium.ph.

 

 

Read more

True-RMS in calibration industry: Explained

A True-RMS device can be classified as one of three tools that can measure either alternating current (ac) or ac voltage. They can be classified as: True-RMS digital multimeters (or clamp meter), Average-responding digital (or clamp meter), and oscilloscope.

 

The first two classifications are commonly used, and both of them can accurately measure standard, pure alternating current waveform. A waveform is a representation of how alternating current (AC) varies with time. There are many types of waveforms but the most familiar is the Sinusoidal (sine) waveforms. Other forms of AC waves are grouped and classified as Non-sinusoidal waveforms. To further differentiate the two, below is each of the waveform’s distinct definition and structure.

 

  • Sinusoidal (sine) Waves: Pure, without distortion, and has symmetrical transitions between peaks and valleys.

 

  • Non-sinusoidal Waves: Waves with distorted and irregular patterns, waveforms such as spikes, pulse trains, squares, triangles, and any other ragged or angular waves are classified as Non-sinusoidal waves.

 

A true-RMS meter is widely preferred because it is the only device that can accurately measure both sinusoidal and non-sinusoidal waveforms. See illustrations below for reference.

 

It is essential to have an understanding about true-RMS devices. Its formula is based on RMS = root mean square. Though it is challenging to grasp, RMS essentially calculates the equivalent direct (dc) value of an ac waveform. Technically, it determines the “effective”, or dc heating value of any ac wave shape.

 

It is important to know that a sophisticated true-RMS meter can accurately measure both pure waves and complex non-sinusoidal waves. Factors such as variable speed drives or computers can potentially distort the structure of waveforms. Thus, averaging true-RMS multimeters attempt to measure these distorted waveforms with these standard calculations below:

The need for true-RMS meters has grown due to the increase of non-sinusoidal wave possibilities in circuits from the following apparatuses below:

 

  • Variable-speed motor drives
  • Electronic ballasts
  • Computers
  • HVAC

 

The environments from these devices produces current that occurs in short pulses rather than the smooth sine wave from a standard induction motor. Hence, true-RMS meter is the best choice for taking measurements on power lines where ac characteristics are unknown.

 

A legitimate true-RMS meter is needed for every electrical and AC voltage measurements. There are many companies who have promised this type of product that is dependable and reliable. Fluke Industrial Group is the world leader in the manufacture, distribution and service of electronic test tools. It is your number one choice for your True-RMS meters, and if you are looking for any Fluke Calibration instruments in the countr, Presidium.ph Corporation could help you with that! We assure you that our products our straight from Fluke Industrial group themselves. Expect to have accurate results with your True-RMS meter. Let us be your reliable partner for your reliable test instruments!

 

For more info, you can contact us at +632-464-9339 or visit our website at www.presidium.ph.

 

 

Read more

Getting know your Digital Multimeter

One of the well-known calibration instrument that is available in the market right now is the Digital Multimeter or DMM. It is a test tool that is being used to measure two or more electrical values such as principal voltage (volts), current (amps), and resistance (ohms). There is no wonder that it is, indeed, a standard diagnostic tool for technicians in the electrical/electronical industries.

 

This testing tool combines all the capabilities of the three single-task meters namely the voltmeter for measuring volts, the ammeter for measuring amps, and the ohmmeter that is being used for measuring ohms. More often than not, digital multimeters include some additional specialized features and advanced options.

 

The digital multimeter is the replacement for needle-based analogue meters. The analogue meters were replaced by digitized multimeters for it has greater accuracy, reliability, and increased impedance. The first digital multimeter of Fluke was released in 1977.

A typical face of a digital multimeter has four main components:

 

  1. Display: Where measurement readouts can be viewed.
  2. Buttons: For selecting various functions; the options vary by model.
  3. Dial (or rotary switch): For selecting primary measurement values (volts, amps, ohms).
  4. Input jacks: Where test leads are inserted

 

The test leads are flexible, insulated wires – red for positive and black for negative – that plug into the digital multimeter through the input jacks. These serve as the conductor from the item being tested to the multimeter. Each lead has some probe tips that are used for testing circuits.

 

Each term counts and digits are used to describe a digital multimeter’s solution as if how a meter can make a fine measurement. A technician can determine if it is possible to see a small change in a measured signal by knowing a multimeter’s resolution.

 

For example: If a multimeter offers a resolution of 1 mV on the 4 V range, it is possible to see a change of 1 mV (1/1000th of a volt) while reading 1V.

 

Take note that digital multimeters are grouped by their numbers of counts they display which is up to 20,000. A digital Multimeter, just like the ones from Fluke, is definitely multi-purpose, standardized, advanced, compact, and wireless.

 

Invest in the highly-efficient and high quality Digital Multimeters of Fluke! Get it here at Presidium.PH, an authorized dealer of Fluke Calibration and Fluke Industrial Tools in the Philippines. Contact us at +63 2 464 9339 or info@presidium.ph for inquires and more information!

Read more

2013 AHR Expo Innovation Award

The Fluke 805 Vibration Meter received the 2013 AHR Expo Innovation Award in the Tools & Instruments category. The 805 was selected by panel judges made up of ASHRAE members based on the tools’ innovation, application, value to the user, and market impact. The award was presented during the AHR Expo on January 29 at the Dallas Convention Center.

Read more