Fluke Digital Multimeters: Using Current Clamps On Multimeters

Accessory current clamps can expand a multimeter’s flexibility and measurement capabilities by allowing it to measure up to thousands of amps. The clamp accessory reduces the actual measured current by a fixed ratio. This means that the current maximum is now limited by the clamp instead of the multimeter.

The following discussion focuses on the most common types of current clamps used with digital multimeters (Digital multimeter):

  1. AC only with a milliamp output like the Fluke i200, i400, 80i-400, 80i-600A or i800
  2. AC/DC with a millivolt output like the Fluke i410 AC/DC Current Clamp AC/DC Current Clamp, i1010 and 80i-110s

Note: This is not a complete user guide. Make sure to read the safety and usage information contained within the clamp’s instruction sheets.

AC clamps: Fluke i200, i400, 80i-400 or i800

The i200, i400, 80i-400, and i800 are current transformer-type clamps that have an output of 1 milliamp ac per amp ac. This is a 1000:1 ratio. Additionally, they also have banana plug connections. However, take note that these clamps do not measure dc current.

To use these clamps with a Fluke Digital multimeter, the meter must have a milliamp input jack. Plug the black output lead into the meter’s common jack and the red output lead into the meter’s milliamp or mA input jack. Set the meter’s function switch to read ac milliamps.

Furthermore, place the clamp jaws around only one conductor of the circuit. Clamping around both the line and neutral conductors (like a line cord) at the same time will cancel the current flow reading. If there is currently flowing in the circuit, the milliamp reading in the display will be the actual current flow in amps.

The reading on the Fluke 87V Industrial Multimeter display (15.86 mA ac) corresponds to a true circuit current of 15.86 amps ac. The reading on the Fluke 289 True-RMS Data Logging Multimeter display (225.32 mA ac) corresponds to a true circuit current of 225.32 amps ac.

AC/DC clamps: Fluke i410 AC/DC Current Clamp AC/DC Current Clamp and i1010

The i410 and i1010 are ac/dc Hall Effect type clamps. That is, they contain Hall Effect sensors, and have internal electronics and a power switch. These clamps have an output of 1 millivolt ac per amp ac for ac current measurements and 1 millivolt dc per amp dc for dc current measurements. Again, these have a 1000:1 turns ratio.

To use these clamps with a Fluke Digital multimeter for best results, the meter should have a millivolt range for either ac or dc voltage depending on the current to be measured. And then, there are ac current measurements. For this to work, plug the black output lead into the meter’s common jack and the red output lead into the meter’s V/? input jack. Set the meter’s function switch to read ac voltage or ac millivolts.

Connections for i410/i1010 clamps with a 289 Digital multimeter

The reading in the Fluke 289 True-RMS Data Logging Multimeter display (7.437 mV ac) corresponds to a true circuit current of 7.437 amps ac.

For dc current measurements, here’s what you have to do. Plug the black output lead into the meter’s common jack and the red output lead into the meter’s V/? input jack. Set the meter’s function switch to read dc millivolts. Turn the clamp on by pressing the green power button.

Here’s what you should do for the most accurate dc measurements. With the jaws closed use the “zero” adjust to zero the displayed reading before clamping around the current to be measured. DC measurements only require zero adjustments. Only one conductor should have clamp jaws wrapped around them. If there is currently flowing in the circuit, the millivolt reading in the display will be the actual current flow in amps.

AC/DC clamps: Fluke 80i-110s

80i-110s is also an ac/dc Hall Effect Type clamp. This is a dual-range clamp with an output of either 10 millivolts or 100 millivolts per amp ac for ac current measurements or 10 millivolts or 100 millivolts per amp dc for dc current measurements. Use the 100 millivolts per amp position for accurate current measurements up to 10 amps and the 10 millivolts per amp position for current measurements exceeding 10 amps but less than 100 amps

initially, this clamp was originally designed for use with an oscilloscope and terminates with a BNC-style connector. To use it with a Digital multimeter, add a PM9081/001 BNC to the dual banana adapter. Therefore, for best results, the Digital multimeter should have a millivolt range for either ac or dc voltage, depending on the current to be measured.

Meanwhile, for ac current measurements, plug the black output connector into the meter’s common jack and the red output connector into the meter’s V/? input jack. Set the meter’s function switch to read AC millivolts or AC voltage. Finally, turn the probe on by sliding the switch from “Off” to the appropriate range position depending on the current.

To know more of our fluke Digital multimeter products, visit our website at https://presidium.ph/product-category/products/fluke-industrial-group-tools/digital-multimeters/

Read more

How To Track Intermittent Faults In Overhead Utility Cables?

Intermittent faults are notoriously hard to find. If you don’t know when they’ll occur, you need some form of data logging. To put it simply, intermittent faults are malfunctions of devices or systems caused in intervals. In addition to this, you may also need to transfer the data remotely. So, measuring instruments should be versatile and intelligent with a Wi-Fi connection, and may need to read two external sensors.

Intermittent Faults: Overhead and underground utility cables

One of the users is an energy utility with extensive overhead and underground cables. Like the vast majority of energy utilities, they need to know the overhead cable power quality. Alongside the faults found in any other network, these are very sensitive to all kinds of weather phenomena.

Moreover, strong winds can cause wires to “gallop” and touch each other. That can cause voltage dips or short interruptions. Wires can then or at other times touch trees which can cause flashovers or even fires. Pylons can blow down, broken branches can damage cables, and driving rain or hail can penetrate electrical joints.

This utility’s end customer was complaining of flickers and voltage fluctuations. The maintenance department measured power quality parameters on the overhead power lines. Crucial measurements because these parameters give you some of the most important top-level fault-finding information.

Intermittent Faults: Excessive flicker and voltage dips

The measurements verified that flicker and voltage dips exceeded EN50160 limits, but the cause was not clear. One possibility was the wind making tree branches either touch the wires or shake a wire loose at a poor connector. Your first thought might be to send someone out to check, but long lines are expensive to test that way. Then again, a windy environment is ideal for measurements like this. This is because whether a branch hits the line (for example) will depend not only on the clearance but also on the stiffness or flexibility of the tree.

Our Fluke 1748 three-phase power quality logger monitored the wind speed across an anemometer. Importantly for energy utilities, 1748 complies fully with the 3rd edition of the IEC61000-4-30 standard. The logger captures voltage, current, power, energy, frequency, and power factor. It quickly assesses power quality to standards like EN 50160 and IEEE 519. The instrument is rated at 600 V CAT IV/1000 V CAT III for service entrance, substations, and downstream. It stores more than 20 separate logging sessions, and can quickly create reports to confirm the findings.

Results sent over Wi-Fi

A Kirwan INT10 BA® anemometer was fixed to the top of a 230-V supply pole, supplied by the battery to ensure uninterrupted power.

The Fluke 1748 was fitted with a 174x AUX accessory that accepts two inputs, one between ± 10V DC and the other between ± 1,000V DC. The AUX inputs can be freely scaled in software, and the signals can be correlated to each other. That was key for this application and is virtually unique to 1748. The first input was attached to the anemometer, which converts wind speeds of 0 to 60 m/s to a linear output signal of 0 to 10 V. The second monitored the overhead cable voltage.

The instrument software allowed the utility to analyze the results immediately and download the data to a laptop 10 meters away without interrupting data logging. A month’s worth of measurements correlated voltage variations and wind speed. That confirmed the fault caused to be galloping wires, and the problem was quickly found to be worn wire connectors.

Repayment times

Repayment time is possibly the single most important measure of an instrument’s value to our customers. In cases like this, though, it’s difficult to assess: how do you value your customers’ goodwill and how they feel about your service? Let alone the work satisfaction and reputation of a fault quickly solved by your maintenance department.

Reach us through this link or contact us at +632 84590167 / +632 82570795

Read more

Electrical Transmission Cables

  • Measuring tools: Fluke 1587 Insulation Multimeter
  • Operator: Singapore electrical utility
  • Tests conducted: Insulation resistance cable test, continuity, voltage

When the electrical transmission is underway and distributed from generation plants to the end-users, it passes through numerous sections of low voltage and high voltage cables. These transmission cables are also used to connect to the secondary outputs of current transformers (CT). They are deployed at both ends of the transmission stations, also known as sub-stations. The Fluke 1587 Insulation Multimeter is the direct action to any electrical transmission cables’ faulty wirings.

To protect critical equipment and prevent the escalation of faults, these pilot cables serve to detect any unbalances between the corresponding pairs of CT. Ultimately, this may affect the entire transmission network. While only one pair of wires is needed to complete the connections, operation, and redundancy, planning calls for a minimum of three functional pairs of wires at any one time.

About electrical transmission.

It is impossible to have a single cable that spans the vast distance between sub-stations. As a result, this can imply a connection of cables. To say the least, such joints are the weakest links in the system. Ultimately, environmental factors can cause faulty joints. One of these factors includes thermal stress and moisture absorption. The failures will show up when current readings taken at the secondary of CT deviate from the proportional primary current readings. Remember, never be complacent with these kinds of abnormalities so it’s always safe to contact someone who knows their way around. Call utility maintenance when these kinds of faults occur.

Meanwhile, maintenance men have to travel to the sub-station at one end to isolate the affected CT and pilot cable at that sub-station. Then they need to travel to the sub-station at the other end to check the insulation resistance of the pilot cable.

While they’re at it, they will check the pair of wires that have been used, as well as all the remaining 4 or 9 pairs of wires in the same bunch of pilot cable, and ensure at least three pairs are functional. As some wires may have permanent damage, there’s actually a way to prevent this. How? With the use of colored cables. Different colored wires are mixed to achieve a minimum of 3 functional pairs. Therefore, the team must verify the exact inter-connect pairs and they term this work as “phasing”.

Thereafter, to prevent abnormality, make it a habit to check insulation resistance. This also goes for “phasing”.

Remember…

In addition, these tests can be mandated by a new extension of cables due to civil engineering works. It’s no secret that time is critical for maintenance men, so the faster the troubleshooting, the better. Moreover, doing these tests in the shortest time possible is a huge plus. Maintenance people find the Fluke 1587 Insulation Multimeter a very versatile tool. Why? This device can perform insulation resistance tests as well as voltage measurements and continuity checks.

For testing of high voltage equipment, cables and switchgear, the team relied on the Fluke 1550B 5 VK MegOhmMeter.

Get your Fluke tool from a trusted source!

Presidium PH is an authorized distributor of Fluke test tools in the Philippines. So if you want to know more about Fuke tools and their functions, visit our website for more info! This is a one-stop-shop for the best test tools in the market! With a wide selection of the best troubleshooting and maintenance devices, this is your one-stop-shop for all your device needs when it comes to choosing the best device for your electrical transmission needs.

You could now buy Fluke 1587 Insulation Multimeter from us! Simply contact:+632 84590167/ +632 82570795 / +632 82515165 or visit our e-commerce site.

Read more

Thermal Imaging Software: Choose The One That Makes Your Job Easier!

Thermal imaging software extends a lot more features and happens a lot easier to utilize than what was accessible in the past. Now, you can connect thermal imaging software on a PC or mobile device. Ultimately, this can establish, improve, simplify, and evaluate images and construct professional-looking reports that you can distribute in email.

Moreover, don’t think that by augmenting images you’re altering the actual data; you’re just modifying how it is presented so that even an inexperienced eye can clearly see anomalies. Basically, this helps expedite decisions and minimize debates.

Choosing Thermal Imagers…

Here are some of the basic rules for choosing thermal imaging software is to make sure it allows you to:

  • Process and export images in multiple formats including .jpg, .tiff, .bmp, .gif, and .avi as well as proprietary formats that allow you to access more data for advanced analysis.
  • Edit and manipulate images by adjusting level and span, changing emissivity, adding markers, highlighting hot spots, referencing images, and applying color alarms.
  • Combine visible light and infrared images and adjust the blend between the two to more easily locate and highlight potential problem areas.
  • View and share images live from your camera, your smartphone, or your computer to collaborate with remote team members.
  • Remotely control your infrared camera to adjust focus or capture images without touching the camera. This is especially valuable in potentially hazardous areas or tight spaces.
  • Create templated or custom reports that you can share in .pdf or .docx formats.
  • Perform three-dimensional analysis so you can view infrared images from multiple perspectives to identify additional problem areas and help eliminate false positives.
  • Compare images side-by-side so you can see the changes in the same target over time to aid predictive maintenance programs.
  • Change color palette to make hot or cold areas more obvious with high contrast palettes or to see subtler differences with a grayscale palette.
  • Add text and audio annotations along with additional visible-light images to provide the details you need for thorough reporting.
  • Categorize, catalog, or tag images and associate them with equipment to make it easier to track images over time.

Get your Fluke tool from a trusted source!

Presidium PH is an authorized distributor of Fluke test tools in the Philippines. Therefore, if you want to know more about Fuke tools and their functions, visit our website for more info! This is a one-stop-shop for the best test tools in the market!

Receive personalized recommendations from an Authorized Distributor. Contact us now!

+632 84590167 / +632 82570795 or email us info@presidium.ph

Read more